Изучение генерации магнитного поля в хиральных медных нанотрубках
(Стр. 17-21)
Подробнее об авторах
Краснов Дмитрий Олегович
эксперт отдела эксплуатации автоматизированных информационных систем
Российский химико-технологический университет имени Д.И. Менделеева
Москва, Российская Федерация Кольцова Элеонора Моисеевна доктор технических наук, профессор; заведующая кафедрой информационных компьютерных технологий
Российский химико-технологический университет имени Д.И. Менделеева
Москва, Российская Федерация
Российский химико-технологический университет имени Д.И. Менделеева
Москва, Российская Федерация Кольцова Элеонора Моисеевна доктор технических наук, профессор; заведующая кафедрой информационных компьютерных технологий
Российский химико-технологический университет имени Д.И. Менделеева
Москва, Российская Федерация
Аннотация:
Рассчитаны магнитные поля, генерируемые хиральными медными нанотрубками. Определены числа каналов баллистического транспорта, низкотемпературные электронные токи и магнитные поля в наносоленоидах на основе медных нанотрубок различной структуры. Результаты свидетельствуют о том, что хиральные нанотрубки могут быть использованы для создания наносоленоидов с заданными характеристиками.
Образец цитирования:
Краснов Д.О., Кольцова Э.М., (2022), ИЗУЧЕНИЕ ГЕНЕРАЦИИ МАГНИТНОГО ПОЛЯ В ХИРАЛЬНЫХ МЕДНЫХ НАНОТРУБКАХ. Computational nanotechnology, 4 => 17-21.
Список литературы:
Murphy C.J., Sau T.K., Gole A.M. Anisotropic metal nano-particles: Synthesis, assembly, and optical applications. Journal of Physical Chemistry B. 2005. Vol. 109. Pp. 13857-13870. URL: https://doi.org/10.1021/jp0516846
Oshima Y., Onga A., Takayanagi K. Helical gold nanotube synthesized at 150 K. Physical Review Letters. 2003. Vol. 91. P. 205503. URL: https://doi.org/10.1103/PhysRevLett.91.205503
Kharche N., Manjari S.R., Zhou Y. et al. A comparative study of quantum transport properties of silver and copper nanowires using first principles calculations. Journal of Physics: Condensed Matter. 2011. Vol. 23. P. 085501. URL: https://doi.org/10.1088/0953-8984/23/8/085501
Kumar A., Kumar A., Ahluwalia P.K. Ab initio study of structural, electronic and dielectric properties of free standing ultrathin nanowires of noble metals. Physica E: Low-dimensional Systems and Nanostructures. 2012. Vol. 46. Pp. 259-269. URL: https://doi.org/10.1016/j.physe.2012.09.032
Hsiao J.C., Fong K. Making big money from small technology. Nature. 2004. Vol. 428. Pp. 218-220. URL: https://doi.org/10.1038/428218a
Lu W., Lieber C.M. Nanoelectronics from the bottom up. Nature Materials. 2007. Vol. 6. Pp. 841-850. URL: https://doi.org/10.1038/nmat2028
Natelson D. Best of both worlds. Nature Materials. 2006. Vol. 5. Pp. 853-854. URL: https://doi.org/10.1038/nmat1769
Landauer R. Electrical resistance of disordered one-dimensional lattices. Philosophical Magazine. 1970. Vol. 21. Pp. 863-867. URL: https://doi.org/10.1080/14786437008238472
Zhang Z.Y., Miao C., Guo W. Nano-solenoid: Helicoid carbon-boron nitride hetero-nanotube. Nanoscale. 2013. Vol. 5. Pp. 11902-11909. URL: https://doi.org/10.1039/C3NR02914J
James C.R., Long J.E., Manning D.E. Significant multi Tesla fields within a solenoid encircled by nanostructure windings. Scientific Reports. 2019. Vol. 9. Pp. 1-11. URL: https://doi.org/10.1038/s41598-018-38306-8
Kaniukov E.Y., Kozlovsky A.L., Shlimas D.I. et al. Electrochemically deposited copper nanotubes. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2017. Vol. 11. Pp. 270-275. URL: https://doi.org/10.1134/S1027451017010281
Venkata Kamalakar M., Raychaudhuri A.K. A novel method of synthesis of dense arrays of aligned single crystalline copper nanotubes using electrodeposition in the presence of a rotating electric field. Advanced Materials. 2008. Vol. 20. Pp. 149-154. URL: https://doi.org/10.1002/adma.200700430
Kaniukov E.Y., Kozlovsky A.L., Shlimas D.I. et al. Tunable synthesis of copper nanotubes. IOP Conference Series: Materials Science and Engineering. - IOP Publishing. 2016. Vol. 110. P. 012013. URL: https://doi.org/10.1088/1757-899X/110/1/012013
Krasnov D.O., Zhensa A.V., Koltsova E.M. Magnetic properties of chiral copper nanotubes. Nanotechnology and Nanomaterials. 2022. Vol. 9. No. 3. Pp. 68-72. URL: https://doi.org/10.33693/2313-223X-2022-9-3-68-72
Zhang K., Zhang H. Plasmon coupling in gold nanotube assemblies: Insight from a time-dependent density functional theory (TDDFT) calculation. Journal of Physical Chemistry C. 2014. Vol. 118. No. 1. Pp. 635-641. URL: https://doi.org/10.1021/jp410056u
Dyachkov P.N., Dyachkov E.P. Magnetic properties of chiral gold nanotubes.Russian Journal of Inorganic Chemistry. 2020. Vol. 65. Pp. 1196-1203. (In Rus.) URL: https://doi.org/10.1134/S0036023620070074
Dyachkov P.N., Dyachkov E.P. Modeling of nanoscale electromagnets based on gold finite nanosolenoids. ACS Omega. 2020. Vol. 5. Pp. 5529-5533. URL: https://doi.org/10.1021/acsomega.0c00167
Khoroshavin L.O., Krasnov D.O., Dyackov P.N. et al. Electronic properties of achiral and chiral gold nanotubes.Russian Journal of Inorganic Chemistry. 2017. Vol. 62, Pp. 783-789. URL: https://doi.org/10.1134/S0036023619010145
Krasnov D.O., Khoroshavin L.O., Dyachkov P.N. Spin-orbit coupling in single-walled gold nanotubes.Russian Journal of Inorganic Chemistry. 2019. Vol. 64. Pp. 108-113. (In Rus.) URL: https://doi.org/10.1134/S0036023619010145
Oshima Y., Onga A., Takayanagi K. Helical gold nanotube synthesized at 150 K. Physical Review Letters. 2003. Vol. 91. P. 205503. URL: https://doi.org/10.1103/PhysRevLett.91.205503
Kharche N., Manjari S.R., Zhou Y. et al. A comparative study of quantum transport properties of silver and copper nanowires using first principles calculations. Journal of Physics: Condensed Matter. 2011. Vol. 23. P. 085501. URL: https://doi.org/10.1088/0953-8984/23/8/085501
Kumar A., Kumar A., Ahluwalia P.K. Ab initio study of structural, electronic and dielectric properties of free standing ultrathin nanowires of noble metals. Physica E: Low-dimensional Systems and Nanostructures. 2012. Vol. 46. Pp. 259-269. URL: https://doi.org/10.1016/j.physe.2012.09.032
Hsiao J.C., Fong K. Making big money from small technology. Nature. 2004. Vol. 428. Pp. 218-220. URL: https://doi.org/10.1038/428218a
Lu W., Lieber C.M. Nanoelectronics from the bottom up. Nature Materials. 2007. Vol. 6. Pp. 841-850. URL: https://doi.org/10.1038/nmat2028
Natelson D. Best of both worlds. Nature Materials. 2006. Vol. 5. Pp. 853-854. URL: https://doi.org/10.1038/nmat1769
Landauer R. Electrical resistance of disordered one-dimensional lattices. Philosophical Magazine. 1970. Vol. 21. Pp. 863-867. URL: https://doi.org/10.1080/14786437008238472
Zhang Z.Y., Miao C., Guo W. Nano-solenoid: Helicoid carbon-boron nitride hetero-nanotube. Nanoscale. 2013. Vol. 5. Pp. 11902-11909. URL: https://doi.org/10.1039/C3NR02914J
James C.R., Long J.E., Manning D.E. Significant multi Tesla fields within a solenoid encircled by nanostructure windings. Scientific Reports. 2019. Vol. 9. Pp. 1-11. URL: https://doi.org/10.1038/s41598-018-38306-8
Kaniukov E.Y., Kozlovsky A.L., Shlimas D.I. et al. Electrochemically deposited copper nanotubes. Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques. 2017. Vol. 11. Pp. 270-275. URL: https://doi.org/10.1134/S1027451017010281
Venkata Kamalakar M., Raychaudhuri A.K. A novel method of synthesis of dense arrays of aligned single crystalline copper nanotubes using electrodeposition in the presence of a rotating electric field. Advanced Materials. 2008. Vol. 20. Pp. 149-154. URL: https://doi.org/10.1002/adma.200700430
Kaniukov E.Y., Kozlovsky A.L., Shlimas D.I. et al. Tunable synthesis of copper nanotubes. IOP Conference Series: Materials Science and Engineering. - IOP Publishing. 2016. Vol. 110. P. 012013. URL: https://doi.org/10.1088/1757-899X/110/1/012013
Krasnov D.O., Zhensa A.V., Koltsova E.M. Magnetic properties of chiral copper nanotubes. Nanotechnology and Nanomaterials. 2022. Vol. 9. No. 3. Pp. 68-72. URL: https://doi.org/10.33693/2313-223X-2022-9-3-68-72
Zhang K., Zhang H. Plasmon coupling in gold nanotube assemblies: Insight from a time-dependent density functional theory (TDDFT) calculation. Journal of Physical Chemistry C. 2014. Vol. 118. No. 1. Pp. 635-641. URL: https://doi.org/10.1021/jp410056u
Dyachkov P.N., Dyachkov E.P. Magnetic properties of chiral gold nanotubes.Russian Journal of Inorganic Chemistry. 2020. Vol. 65. Pp. 1196-1203. (In Rus.) URL: https://doi.org/10.1134/S0036023620070074
Dyachkov P.N., Dyachkov E.P. Modeling of nanoscale electromagnets based on gold finite nanosolenoids. ACS Omega. 2020. Vol. 5. Pp. 5529-5533. URL: https://doi.org/10.1021/acsomega.0c00167
Khoroshavin L.O., Krasnov D.O., Dyackov P.N. et al. Electronic properties of achiral and chiral gold nanotubes.Russian Journal of Inorganic Chemistry. 2017. Vol. 62, Pp. 783-789. URL: https://doi.org/10.1134/S0036023619010145
Krasnov D.O., Khoroshavin L.O., Dyachkov P.N. Spin-orbit coupling in single-walled gold nanotubes.Russian Journal of Inorganic Chemistry. 2019. Vol. 64. Pp. 108-113. (In Rus.) URL: https://doi.org/10.1134/S0036023619010145
Ключевые слова:
моделирование, магнитные свойства, нанотрубки, квантовая химия.
Статьи по теме
Нанотехнологии и наноматериалы Страницы: 68-72 DOI: 10.33693/2313-223X-2022-9-3-68-72 Выпуск №21873
Магнитные свойства хиральных медных нанотрубок
моделирование
магнитные свойства
нанотрубки
квантовая химия
modeling
Подробнее
5. МАТЕМАТИЧЕСКИЕ И ИНСТРУМЕНТАЛЬНЫЕ МЕТОДЫ ЭКОНОМИКИ 08.00.13 Страницы: 148-153 Выпуск №18204
Разработка индикативной системы оценки уровня «счастья» с использованием глобальных индексов, включая человеческий капитал
регрессионный анализ
корреляция
моделирование
прогнозирование
ВВП на душу населения
Подробнее
Социально-экономические исследования Страницы: 77-82 DOI: 10.33693/2223-0092-2022-12-6-77-82 Выпуск №22403
Модель устойчивого регионального развития с учетом условий эффективной реализации регламентов государственного управления и функционирования научных институтов
устойчивое развитие
система оценки
региональное развитие
моделирование
научные институты
Подробнее
ЭРГОНОМИКА СЛОЖНЫХ СИСТЕМ Страницы: 95-100 DOI: 10.336 9 3/2313- 223X - 2019 - 6 - 2- 9 5- 1 Выпуск №15585
МЕТОДЫ ОЦЕНКИ РАБОЧЕГО МЕСТА ЭКИПАЖА В ПРОЦЕССЕ ПРОЕКТИРОВАНИЯ КАБИНЫ ПЕРСПЕКТИВНОГО АВИАЦИОННОГО КОМПЛЕКСА
компоновка кабины экипажа
информационно-управляющее поле
стенд поисковых исследований
аппаратно-программный комплекс
эргономические показатели
Подробнее
6. ФИЗИКА КОНДЕНСИРОВАННОГО СОСТОЯНИЯ Страницы: 107-113 Выпуск №9675
КОМПЬЮТЕРНОЕ МОДЕЛИРОВАНИЕ СДВИГОВОГО РАЗРУШЕНИЯ В ТИТАНЕ КАК НАЧАЛЬНОЙ СТАДИИ ПРОЦЕССА ТРЕНИЯ ОДНОРОДНЫХ ПОВЕРХНОСТЕЙ
моделирование
теория функционала плотности
метод псевдопотенциала
сдвиговое разрушение
титан
Подробнее
МАТЕРИАЛОВЕДЕНИЕ И ТЕХНОЛОГИЯ МАТЕРИАЛОВ Страницы: 146-150 Выпуск №11955
МЕХАНИЧЕСКИЕ СВОЙСТВАНАНОРАЗМЕРНЫХ ПОКРЫТИЙ НА ОСНОВЕ TI, TIN И ZRN
модуль Юнга
модуль сдвига
моделирование
растяжение поверхности
трещины
Подробнее
Математическое и программное обеспечение вычислительных систем, комплексов и компьютерных сетей Страницы: 190-208 DOI: 10.33693/2313-223X-2024-11-4-190-208 Выпуск №173588
Фракталы и устройство Вселенной
фракталы
самоподобие
структура вселенной
галактики
нервная система
Подробнее
Нанотехнологии и наноматериалы Страницы: 214-223 DOI: 10.33693/2313-223X-2024-11-1-214-223 Выпуск №95355
Новые подходы к синтезу функциональных материалов с заданными свойствами под действием концентрированного излучения и импульсного туннельного эффекта
синтез функциональных материалов
импульсный туннельный эффект
концентрированное солнечное излучение
метастабильные фазы
электрические свойства
Подробнее
Системный анализ, управление и обработка информации Страницы: 9-18 DOI: 10.33693/2313-223X-2021-8-4-9-18 Выпуск №20323
Анализ перспектив применения технологии интернета вещей в электроэнергетической отрасли
интернет вещей
предсказательное техническое обслуживание
экономическая эффективность
окупаемость
моделирование
Подробнее
Интеллектуальные технические системы в производстве и промышленной практике Страницы: 69-75 DOI: 10.33693/2313-223X-2021-8-3-69-75 Выпуск №19706
Теоретико-методологическое изучение системы метрологического обеспечения
качество продукции
метрологическое обеспечение
системная модель
моделирование
непрерывность
Подробнее