Jordan-Wigner Transformation and Qubits with Nontrivial Exchange Rule
(Стр. 23-28)
Подробнее об авторах
Vlasov Alexander Yu.
P.V. Ramzaev Research Institute of Radiation Hygiene
Saint Petersburg, Russian Federation
P.V. Ramzaev Research Institute of Radiation Hygiene
Saint Petersburg, Russian Federation
Чтобы читать текст статьи, пожалуйста, зарегистрируйтесь или войдите в систему
Аннотация:
Well-known (spinless) fermionic qubits may need more subtle consideration in comparison with usual (spinful) fermions. Taking into account a model with local fermionic modes, formally only the ’occupied’ states |1〉 could be relevant for antisymmetry with respect to particles interchange, but ‘vacuum’ state |0〉 is not. Introduction of exchange rule for such fermionic qubits indexed by some ‘positions’ may look questionable due to general super-selection principle. However, a consistent algebraic construction of such ‘super-indexed’ qubits is presented in this work. Considered method has some relation with construction of super-spaces, but it has some differences with standard definition of supersymmety sometimes used for generalizations of qubit model.
Образец цитирования:
V DOI: 10.33693/2313-223X-2021-8-3-23-28
Список литературы:
Feynman R.P. Simulating physics with computers. Int. J. Theor. Phys. 1982. No. 21. Pp. 467-488.
Feynman R.P. Quantum-mechanical computers. Found. Phys. 1986. No. 16. Pp. 507-531.
Jordan P., Wigner E. Uber das Paulische Aquivalenzverbot. Zeitschrift fur Physik. 1928. No. 47. Pp. 631-651.
Bravyi S., Kitaev A. Fermionic quantum computation. Ann. Phys. 2002. No. 298. Pp. 210-226. arXiv:quant-ph/0003137
Gilbert J.E., Murray M.A.M. Clifford Algebras and Dirac Operators in Harmonic Analysis. Cambridge: Cambridge University Press, 1991.
DiVincenzo D.P. Two-bit gates are universal for quantum computation. Phys. Rev. A. 1995. No. 51. Pp. 1015-1022. arXiv:cond-mat/9407022
Deutsch D., Barenco A., Ekert A. Universality in quantum computation. Proc. R. Soc. Lond. A. 1995. No. 449. Pp. 669-677. arXiv:quant-ph/9505018
Vlasov A.Yu. Clifford algebras and universal sets of quantum gates. Phys. Rev. A. 2001. No. 63. P. 054302. arXiv:quant-ph/0010071
Lounesto P. Clifford Algebras and Spinors. Cambridge: Cambridge University Press, 2001.
Postnikov M.M. Lie Groups and Lie Algebras. Moscow: Mir Publishers, 1986.
Varadarajan V. Supersymmetry for mathematicians: An introduction. Providence: AMS, 2004.
Deligne P., Morgan J.W. Notes on supersymmetry (following Joseph Bernstein). Quantum Fields and Strings: A Course for Mathematicians, 1. P. Deligne et al. (eds.). Providence: AMS, 1999. Pp. 41-97.
Vlasov A.Yu. Quantum circuits and Spin (3n) groups. Quant. Inf. Comp. 2015. No. 15. Pp. 235-259. arXiv:1311.1666 [quant-ph]
Frydryszak A.M. Qubit, superqubit and squbit. J. Phys.: Conf. Ser. 2013. No. 411. P. 012015. arXiv:1210.0922 [math-ph]
Feynman R.P. Quantum-mechanical computers. Found. Phys. 1986. No. 16. Pp. 507-531.
Jordan P., Wigner E. Uber das Paulische Aquivalenzverbot. Zeitschrift fur Physik. 1928. No. 47. Pp. 631-651.
Bravyi S., Kitaev A. Fermionic quantum computation. Ann. Phys. 2002. No. 298. Pp. 210-226. arXiv:quant-ph/0003137
Gilbert J.E., Murray M.A.M. Clifford Algebras and Dirac Operators in Harmonic Analysis. Cambridge: Cambridge University Press, 1991.
DiVincenzo D.P. Two-bit gates are universal for quantum computation. Phys. Rev. A. 1995. No. 51. Pp. 1015-1022. arXiv:cond-mat/9407022
Deutsch D., Barenco A., Ekert A. Universality in quantum computation. Proc. R. Soc. Lond. A. 1995. No. 449. Pp. 669-677. arXiv:quant-ph/9505018
Vlasov A.Yu. Clifford algebras and universal sets of quantum gates. Phys. Rev. A. 2001. No. 63. P. 054302. arXiv:quant-ph/0010071
Lounesto P. Clifford Algebras and Spinors. Cambridge: Cambridge University Press, 2001.
Postnikov M.M. Lie Groups and Lie Algebras. Moscow: Mir Publishers, 1986.
Varadarajan V. Supersymmetry for mathematicians: An introduction. Providence: AMS, 2004.
Deligne P., Morgan J.W. Notes on supersymmetry (following Joseph Bernstein). Quantum Fields and Strings: A Course for Mathematicians, 1. P. Deligne et al. (eds.). Providence: AMS, 1999. Pp. 41-97.
Vlasov A.Yu. Quantum circuits and Spin (3n) groups. Quant. Inf. Comp. 2015. No. 15. Pp. 235-259. arXiv:1311.1666 [quant-ph]
Frydryszak A.M. Qubit, superqubit and squbit. J. Phys.: Conf. Ser. 2013. No. 411. P. 012015. arXiv:1210.0922 [math-ph]