Моделирование товарооборота кофеен на основе пространственных данных
(Стр. 167-178)
Подробнее об авторах
Иванов Иван Дмитриевич
руководитель
ООО «БСТ Диджитал»
г. Москва, Российская Федерация Аблязина Наиля Хамитовна Институт ЭМИТ
Российская академия народного хозяйства и государственной службы при Президенте Российской Федерации
г. Москва, Российская Федерация Гринева Наталья Владимировна кандидат экономических наук, доцент; доцент, кафедра анализа данных и машинного обучения; Финансовый университет при Правительстве Российской Федерации; г. Москва, Российская Федерация
ООО «БСТ Диджитал»
г. Москва, Российская Федерация Аблязина Наиля Хамитовна Институт ЭМИТ
Российская академия народного хозяйства и государственной службы при Президенте Российской Федерации
г. Москва, Российская Федерация Гринева Наталья Владимировна кандидат экономических наук, доцент; доцент, кафедра анализа данных и машинного обучения; Финансовый университет при Правительстве Российской Федерации; г. Москва, Российская Федерация
Аннотация:
Актуальность статьи заключается в важности задачи размещения для экономических показателей организаций и росте в последние годы интереса к применению пространственных данных в системах поддержки принятия решений. Целью работы является моделирование оценки влияния значимых пространственных факторов для прогнозирования товарооборота кофеен. В рамках статьи проанализированы некоторые подходы, где сочетаются пространственные данные с машинным обучением для решения задачи размещения. Осуществлен корреляционный анализ пространственных данных. Произведен многоступенчатый отбор факторов для двух наборов, релевантных для разных типов моделей. Произведен подбор гиперпараметров для выбранных методов моделирования (линейная регрессия, решающее дерево, случайный лес, градиентный бустинг) и проведено построение моделей. Главными инструментами стали язык программирования Python и его библиотеки pandas, sklearn, XGBoost, hyperopt, shap, boostaroota. Проведен анализ полученных результатов и выделена модель на основе градиентного бустинга как оптимальная с точки зрения точности и интерпретации. Результатом работы является созданный подход к моделированию экономических показателей компании при помощи машинного обучения на основе пространственных данных.
Образец цитирования:
Иванов И. Д., Аблязина Н. Х., Гринева Н. В. Моделирование товарооборота кофеен на основе пространственных данных // Проблемы экономики и юридической практики. 2023. Т. 19. № 3. С. 167-178. EDN: MFRRXN
Список литературы:
Ананьев А. Ю., Гаевой С. В., Островский А. А. Применение геоэкономического имитационного моделирования для решения задач малого и среднего бизнеса // Известия Волгоградского государственного технического университета. —2011. —№. 11. —С. 73–76.
Булычев Д. М. Прогнозирование результатов экспертного оценивания точек продаж с помощью нейронной сети // Вестник Российского нового университета. Серия: Сложные системы: модели, анализ и управление. —2019. —№. 4. —С. 65–74.
Калинкина Г. Е., Маратканов С. В., Габдуллин В. М. Количественная оценка спроса в целях поиска максимально эффективных мест расположения предприятий торговли с помощью геомаркетинга // Вестник Ижевского государственного технического университета. —2012. —№. 4. —С. 57–60.
Наумов А. С., Рубанов И. Н., Аблязина Н. Х. Новые подходы к типологии сельских территорий России //Вестник Московского университета. Серия 5. География. —2021. —№. 4. —С. 12–24.
Тахтаров И. А., Сергеев А. В. Разработка и исследование технологии геомаркетинга на основе транспортных факторов и нелинейной регрессионной модели // Сборник трудов III международной конференции и молодежной школы «Информационные технологии и нанотехнологии» (ИТНТ-2017). —Самара: Новая техника. —2017. —С. 702–706.
ЦИАН. URL: https://www.cian.ru/ (дата обращения: 20.09.2022).
Яндекс.Карты. URL: https://yandex.ru/maps/ (дата обращения: 25.05.2022).
Burges C. et al. Learning to rank using gradient descent // Proceedings of the 22nd international conference on Machine learning. —2005. —С. 89–96.
Karamshuk D. et al. Geo-spotting: mining online location-based services for optimal retail store placement // Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. —2013. —С. 793–801.
Kursa M. B., Rudnicki W. R. Feature selection with the Boruta package // Journal of statistical software. —2010. —Т. 36. —С. 1–13.
Liu Y. et al. DeepStore: An interaction-aware wide&deep model for store site recommendation with attentional spatial embeddings // IEEE Internet of Things Journal. —2019. —Т. 6. —№. 4. —С. 7319–7333.
Yin H. et al. LCARS: a location-content-aware recommender system // Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. —2013. —С. 221–229.
Revealing the ‘Where’ of Business Intelligence using Location Analytics / Esri. 2012. URL: https://www.esri.com/content/dam/esrisites/sitecore-archive/Files/Pdfs/library/whitepapers/pdfs/business-intelligence-location-analytics.pdf (дата обращения: 21.05.2022).
Булычев Д. М. Прогнозирование результатов экспертного оценивания точек продаж с помощью нейронной сети // Вестник Российского нового университета. Серия: Сложные системы: модели, анализ и управление. —2019. —№. 4. —С. 65–74.
Калинкина Г. Е., Маратканов С. В., Габдуллин В. М. Количественная оценка спроса в целях поиска максимально эффективных мест расположения предприятий торговли с помощью геомаркетинга // Вестник Ижевского государственного технического университета. —2012. —№. 4. —С. 57–60.
Наумов А. С., Рубанов И. Н., Аблязина Н. Х. Новые подходы к типологии сельских территорий России //Вестник Московского университета. Серия 5. География. —2021. —№. 4. —С. 12–24.
Тахтаров И. А., Сергеев А. В. Разработка и исследование технологии геомаркетинга на основе транспортных факторов и нелинейной регрессионной модели // Сборник трудов III международной конференции и молодежной школы «Информационные технологии и нанотехнологии» (ИТНТ-2017). —Самара: Новая техника. —2017. —С. 702–706.
ЦИАН. URL: https://www.cian.ru/ (дата обращения: 20.09.2022).
Яндекс.Карты. URL: https://yandex.ru/maps/ (дата обращения: 25.05.2022).
Burges C. et al. Learning to rank using gradient descent // Proceedings of the 22nd international conference on Machine learning. —2005. —С. 89–96.
Karamshuk D. et al. Geo-spotting: mining online location-based services for optimal retail store placement // Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. —2013. —С. 793–801.
Kursa M. B., Rudnicki W. R. Feature selection with the Boruta package // Journal of statistical software. —2010. —Т. 36. —С. 1–13.
Liu Y. et al. DeepStore: An interaction-aware wide&deep model for store site recommendation with attentional spatial embeddings // IEEE Internet of Things Journal. —2019. —Т. 6. —№. 4. —С. 7319–7333.
Yin H. et al. LCARS: a location-content-aware recommender system // Proceedings of the 19th ACM SIGKDD international conference on Knowledge discovery and data mining. —2013. —С. 221–229.
Revealing the ‘Where’ of Business Intelligence using Location Analytics / Esri. 2012. URL: https://www.esri.com/content/dam/esrisites/sitecore-archive/Files/Pdfs/library/whitepapers/pdfs/business-intelligence-location-analytics.pdf (дата обращения: 21.05.2022).
Ключевые слова:
пространственные данные, экономические показатели, машинное обучение.
Статьи по теме
Искусственный интеллект и машинное обучение Страницы: 11-21 DOI: 10.33693/2313-223X-2024-11-2-11-21 Выпуск №119881
Разработка торговой стратегии криптовалюты с применением методов машинного обучения
криптовалюта
биткоин
торговые стратегии
машинное обучение
скользящие средние
Подробнее
5.2.2. МАТЕМАТИЧЕСКИЕ, СТАТИСТИЧЕСКИЕ И ИНСТРУМЕНТАЛЬНЫЕ МЕТОДЫ В ЭКОНОМИКЕ Страницы: 75-79 Выпуск №21250
Современные направления исследований в области рекомендательных систем
рекомендательная система
коллаборативная фильтрация
контентная фильтрация
холодный старт
машинное обучение
Подробнее
МАТЕМАТИЧЕСКИЕ, СТАТИСТИЧЕСКИЕ И ИНСТРУМЕНТАЛЬНЫЕ МЕТОДЫ В ЭКОНОМИКЕ Страницы: 209-215 Выпуск №24576
Потенциал машинного обучения и искусственного интеллекта для развития венчурного инвестирования в России
венчурное инвестирование
венчурный капитал
стартап-проекты
машинное обучение
искусственный интеллект
Подробнее
МАТЕМАТИЧЕСКИЕ, СТАТИСТИЧЕСКИЕ И ИНСТРУМЕНТАЛЬНЫЕ МЕТОДЫ В ЭКОНОМИКЕ Страницы: 185-192 DOI: 10.33693/2541-8025-2024-20-2-185-192 Выпуск №102671
Разработка интеллектуальной системы анализа достижений обучающегося вуза
интеллектуальный анализ
таксономия
машинное обучение
успеваемость студента
цифровой университет.
Подробнее
4. МАТЕМАТИЧЕСКИЕ И ИНСТРУМЕНТАЛЬНЫЕ МЕТОДЫ ЭКОНОМИКИ 08.00.13 Страницы: 176-186 Выпуск №18758
Исследование динамики показателей отчетности как индикаторов ухудшения финансового состояния кредитных организаций
прогнозирование
финансовое состояние
машинное обучение
кредитные организации
банковские рейтинги
Подробнее
МАТЕМАТИЧЕСКИЕ, СТАТИСТИЧЕСКИЕ И ИНСТРУМЕНТАЛЬНЫЕ МЕТОДЫ В ЭКОНОМИКЕ Страницы: 129-140 DOI: 10.33693/2541-8025-2024-20-1-129-140 Выпуск №72283
Разработка модели бинарной классификации на малых данных с использованием методов машинного обучения
машинное обучение
малые данные
задачи классификации
медицинские данные
сэмплирование
Подробнее
4. МАТЕМАТИЧЕСКИЕ И ИНСТРУМЕНТАЛЬНЫЕ МЕТОДЫ ЭКОНОМИКИ 08.00.13 Страницы: 132-138 Выпуск №17852
Стратегия поиска эффективного алгоритма машинного обучения на примере кредитного скоринга
кредитный скоринг
машинное обучение
отбор признаков
ансамбль моделей
credit scoring
Подробнее
4. МАТЕМАТИЧЕСКИЕ И ИНСТРУМЕНТАЛЬНЫЕ МЕТОДЫ ЭКОНОМИКИ 08.00.13 Страницы: 65-72 Выпуск №19146
Прогнозирование финансовых рынков с использованием сверточной нейронной сети
прогнозирование финансовых рынков
машинное обучение
сверточная нейронная сеть
математическая модель
алгоритм
Подробнее
Математическое и программное обеспечение вычислительных систем, комплексов и компьютерных сетей Страницы: 83-91 DOI: 10.33693/2313-223X-2023-10-3-83-91 Выпуск №23683
Определение параметров скрытых угроз раннего обнаружения в информационных системах для задач машинного обучения
машинное обучение
корпоративные информационные системы (КИС)
имитационное моделирование
анализ данных
обработка данных
Подробнее
Многомасштабное моделирование для управления и обработки информации Страницы: 11-20 DOI: 10.33693/2313-223X-2022-9-2-11-20 Выпуск №21224
Определение оптимальной модели машинного обучения для предсказания паводков на реке Амур
управление катастрофами
предсказание паводков
река Амур
машинное обучение
disaster management
Подробнее