Импульсный туннельный эффект Особенности взаимодействия с веществом Эффект наблюдателя
(Стр. 115-144)

Подробнее об авторах
Рахимов Рустам Хакимович доктор технических наук; заведующий, лаборатория № 1
Институт материаловедения Научно-производственного объединения «Физика-Солнце» Академии наук Республики Узбекистан
г. Ташкент, Республика Узбекистан Ермаков Владимир Петрович старший научный сотрудник, лаборатория № 1; Институт материаловедения Научно-производственного объединения «Физика-Солнце» Академии наук Республики Узбекистан; г. Ташкент, Республика Узбекистан
Оплатить 390 руб. (Картой) Оплатить 390 руб. (Через QR-код)

Нажимая на кнопку купить вы соглашаетесь с условиями договора оферты

Аннотация:
В статье рассматривается феномен импульсного туннельного эффекта и его применение для различных процессов, включая генерацию лазерного излучения и получения водорода из водных паров. Рассматриваются различные механизмы работы лазеров, в частности CO2-лазера, и предполагается, что импульсный туннельный эффект может объяснять их высокую эффективность. Анализируется взаимодействие импульсного туннельного эффекта с веществом и возможность его использования для повышения КПД различных процессов, в том числе синтеза экологически чистого водорода.
Образец цитирования:
ОБРАЗЕЦ ЦИТИРОВАНИЯ: Рахимов Р.Х., Ермаков В.П. Импульсный туннельный эффект. Особенности взаимодействия с веществом. Эффект наблюдателя // Computational Nanotechnology. 2024. Т. 11. № 2. С. 115-144. DOI: 10.33693/2313-223X-2024-11-2-115-144. EDN: MWBRQW
Список литературы:
Rakhimov R.Kh. Possible mechanism of pulsed quantum tunneling effect in photocatalysts based on nanostructured functional ceramics // Computational Nanotechnology. 2023. Vol. 10. No. 3. Pp. 26–34. DOI: 10.33693/2313- 223X-2023-10-3-26-34. EDN: QZQMCA.
Рахимов Р.Х. Импульсный туннельный эффект: фундаментальные основы и перспективы применения // Computational nanotechnology. 2024. Т. 11. № 1. С. 193–213. DOI: 10.33693/2313-223X-2024-11-1-193-213. EDN: EWSBUT.
Виттеман В. СO2-лазер. М.: Мир, 1990. 360 с.
Гольданский В.И., Трахтенберг Л.И., Флёров В.Н. Туннельные явления в химической физике. М.: Наука, 1986. 296 с.
Блохинцев Д.И. Основы квантовой механики. 4 изд., М., 1963.
Ландау Л.Д., Лифшиц Е.М. Квантовая механика (нерелятивистская теория) // Теоретическая физика. Изд. 3-е, перераб. и доп. М.: Наука, 1974. Т. III. 752 с.
Razavy M. Quantum theory of tunneling. 2nd ed. Singapore: World Scientific Publishing Co., 2013. 820 с. ISBN: 9814525006.
Рахимов Р.Х., Ермаков В.П., Рахимов М.Р. Фононный механизм преобразования в керамических материалах // Computational Nanotechnology. 2017. № 4. C. 21–35.
Rakhimov R.Kh., Hasanov R.Z., Yermakov V.P. Comparative frequency characteristics of vibrations generated by the functional ceramics and cavitation generator // Computational Nanotechnology. 2018. No. 4. Pp. 57–70.
Рахимов Р.Х., Хасанов Р.З., Ермаков В.П. Частотные характеристики генератора резонансных колебаний // Computational Nanotechnology. 2017. № 4. С. 6–13.
Рахимов Р.Х. Особенности синтеза функциональной керамики с комплексом заданных свойств радиационным методом. Ч. 8: Основы теории резонансной терапии по методу Р. Рахимова (метод «INFRA R») // Computational Nanotechnology. 2016. № 4. С. 32–135.
Парпиев О.Р., Сулейманов С.Х., Рахимов Р.Х. и др. Синтез материалов на большой солнечной печи. Ташкент, 2023. 590 с.
Рахимов Р.Х., Саидов М.С., Ермаков В.П. Особенности синтеза функциональной керамики с комплексом заданных свойств радиационным методом. Ч. 5: Механизм генерации импульсов функциональной керамикой // Computational Nanotechnology. 2016. № 2. С. 81–93.
Рахимов Р.Х. Применение керамических материалов. Дюссельдорф: Lambert, 2023. Т. 1. 278 с.; Т. 2. 202 с.; Т. 3. 384 с.; Т. 4. 220 с.
Рахимов Р.Х. Возможности импульсных преобразователей энергии в качестве фотокатализаторов в водородной энергетике // Сборник матер. III Междунар. конф. «Тенденции развития физики конденсированных сред», Фергана, 30–31 октября 2023 г. Фергана, 2023. С. 297–300.
Рахимов Р.Х., Ермаков В.П. Перспективы солнечной энергетики: роль современных гелиотехнологий в производстве водорода // Computational Nanotechnology. 2023. Т. 10. № 3. C. 11–25. DOI: 10.33693/2313-223X-2023-10-3-11-25. EDN: NQBORL.
Рахимов Р.Х., Рашидов Х.К., Эрназаров М. Физические методы воздействия при обогащении техногенного и рудного сырья: матер. междунар. конф. «Фундаментальные и прикладные проблемы физики», Ташкент, 19–21 октября 2023 г. Ташкент, 2023. С. 49–51.
Попов В.С. Туннельная и многофотонная ионизация атомов и ионов в сильном лазерном поле (теория Келдыша) // Успехи физических наук. 2004. Т. 174. № 9. С. 921–955.
Федоров М.В. Работа Келдыша Л.В. «Ионизация в поле сильной электромагнитной волны» и современная физика взаимодействия атомов с сильным лазерным полем» // ЖЭТФ. 2016. Т. 149. Вып. 3. С. 522–529.
Аммосов М.В., Делоне Н.Б., Крайнов В.П. Взаимодействие атомов с интенсивным излучением // УФН. 1986. Т. 148. No. 6.
Никишов А.И., Ритус В.И. Кинетика многофотонных процессов в сильном излучении // ЖЭТФ. 1966. Т. 50. No. 4.
Rees H. Calculations of multiphoton ionization of atoms in a strong laser field // Phys. Rev. A. 1980. Vol. 22. No. 5.
Korkum P.B. High harmonics using strong laser fields // Phys. Rev. Lett. 1993. Vol. 71. No. 11.
Мешков М.Д. Модели импульсных туннельных явлений во взаимодействии сильного светового поля с атомами // ЖЭТФ. 1999. Т. 116. No 4.
Silaev M., Vvedenskii N. Strong-field approximation beyond the Keldysh theory // Phys. Rev. A. 2014. Vol. 90. No. 6.
Бевз Г.П. Физика атомно-лазерных взаимодействий: монография. 2012.
Квантовый туннельный эффект: учеб. пособие / под ред. В.В. Иванова, А.М. Прохорова. 2016.
Рахимов Р.Х., Ермаков В.П., Рахимов М.Р. Фононный механизм преобразования в керамических материалах // Computational Nanotechnology. 2017. № 4. С. 21–35.
Рахимов Р.Х., Ермаков В.П., Рахимов М.Р., Мухто-ров Д.Н. Возможности полиэтилен-керамического композита в сравнении с полиэтиленовой пленкой в реальных условиях эксплуатации // Computational nanotechnology. 2022. Т. 9. № 2. С. 67–72. DOI: 10.33693/2313-223X-2022-9-2-67-72
Рахимов Р.Х., Петер Дж., Ермаков В.П., Рахимов М.Р. Перспективы применения полимер-керамического композита в производстве микроводорослей // Computational nanotechnology. 2019. Т. 6. № 4. С. 44–48. DOI: 10.33693/2313-223X-2019-6-4-44-48
Bell J.S. On the Einstein–Podolsky–Rosen paradox // Physics. 1964. Vol. 1. No. 3. Pp. 195–200.
Leggett A.J., Garg A. Quantum mechanics versus macroscopic realism: Is the flux there when nobody looks? // Phys. Rev. Lett. 1985. Vol. 54. P. 857; УФН. 2007. Т. 177. № 4. С. 415–425.
Everett H., III. “Relative State” formulation of quantum mechanics // Reviews of Modern Physics. 1957. No. 29. P. 454.
Менский М.Б. Обзоры актуальных проблем. Квантовая механика: новые эксперименты, новые приложения и новые формулировки старых вопросов // Успехи физических наук. 2000. Т. 170. № 6.
Xiaodong Chen. A new interpretation of quantum theory. Time as hidden variable. Salt Lake City: University of Utah, 2000.
Шредингер Э. Разум и материя. М.; Ижевск: РХД, 2000. С. 59–60.
Ключевые слова:
импульсный туннельный эффект, лазеры, CO2-лазер, водород, фотокатализ, эффективность процессов.


Статьи по теме

Нанотехнологии Страницы: 11-25 DOI: 10.33693/2313-223X-2023-10-3-11-25 Выпуск №23683
Перспективы солнечной энергетики: роль современных гелиотехнологий в производстве водорода
солнечная энергия водород альтернативный источник энергии экономическая неэффективность рентабельность
Подробнее
Информатика и информационные процессы Страницы: 102-114 DOI: 10.33693/2313-223X-2024-11-2-102-114 Выпуск №119881
Переработка отходов методом плазменно-дугового электролитического центробежного конвертирования
плазма восстановление и сепарация руды отходы центробежное конвертирование метанол
Подробнее
Нанотехнологии и наноматериалы Страницы: 103-109 DOI: 10.33693/2313-223X-2023-10-4-103-109 Выпуск №47939
Гелиосушка фруктов и овощей с использованием полиэтилен-керамического композита
функциональная керамика композит масса влага радиация
Подробнее
Информатика и информационные процессы Страницы: 145-156 DOI: 10.33693/2313-223X-2024-11-2-145-156 Выпуск №119881
Исследование влияния импульсного излучения, генерируемого функциональной керамикой на основе принципа ИТЭ, на характеристики системы Cr2O3–SiO2–Fe2O3–CaO–Al2O3–MgO–CuO
керамика импульсное излучение импульсный туннельный эффект инфракрасный диапазон механоактивация
Подробнее
Информатика и информационные процессы Страницы: 157-173 DOI: 10.33693/2313-223X-2024-11-2-157-173 Выпуск №119881
Особенности процесса полимеризации на основе ИТЭ
импульсный туннельный эффект полимеризация эффективность физические свойства инновационные технологии
Подробнее
Нанотехнологии и наноматериалы Страницы: 122-139 DOI: 10.33693/2313-223X-2023-10-4-122-139 Выпуск №47939
Производство металлов, неметаллов, энергии и энергоносителей методом плазменно-дугового электролитического центробежного конвертирования
центробежное конвертирование плазма электролиз энергоэффективность сепарация
Подробнее
Информатика и информационные процессы Страницы: 174-190 DOI: 10.33693/2313-223X-2024-11-2-174-190 Выпуск №119881
Импульсный туннельный эффект: результаты испытаний пленочно-керамических композитов
импульсный туннельный эффект функциональная керамика пленочно-керамические композиты фотокатализаторы композитные пленки реакторы генерация
Подробнее
Нанотехнологии и наноматериалы Страницы: 193-213 DOI: 10.33693/2313-223X-2024-11-1-193-213 Выпуск №95355
Импульсный туннельный эффект: фундаментальные основы и перспективы применения
импульсный туннельный эффект когерентное излучение функциональные материалы сверхпроводимость наноматериалы
Подробнее
Нанотехнологии и наноматериалы Страницы: 214-223 DOI: 10.33693/2313-223X-2024-11-1-214-223 Выпуск №95355
Новые подходы к синтезу функциональных материалов с заданными свойствами под действием концентрированного излучения и импульсного туннельного эффекта
синтез функциональных материалов импульсный туннельный эффект концентрированное солнечное излучение метастабильные фазы электрические свойства
Подробнее
Нанотехнологии и наноматериалы Страницы: 224-234 DOI: 10.33693/2313-223X-2024-11-1-224-234 Выпуск №95355
Производительные методы повышения эффективности протекания промежуточных реакций при синтезе функциональной керамики
импульсное инфракрасное излучине функциональная керамика карбонатный метод оксидная технология гелиотехнология
Подробнее