Импульсный туннельный эффект: результаты испытаний пленочно-керамических композитов
(Стр. 174-190)

Подробнее об авторах
Рахимов Рустам Хакимович доктор технических наук; заведующий, лаборатория № 1
Институт материаловедения Научно-производственного объединения «Физика-Солнце» Академии наук Республики Узбекистан
г. Ташкент, Республика Узбекистан Паньков Владимир Васильевич доктор химических наук, профессор; Белорусский государственный университет; г. Минск, Республика Беларусь Ермаков Владимир Петрович старший научный сотрудник, лаборатория № 1; Институт материаловедения Научно-производственного объединения «Физика-Солнце» Академии наук Республики Узбекистан; г. Ташкент, Республика Узбекистан Саидвалиев Темур Садганиевич главный инженер; Институт материаловедения Научно-производственного объединения «Физика-Солнце» Академии наук Республики Узбекистан; г. Ташкент, Республика Узбекистан Рашидов Жасурхон Хуршидович младший научный сотрудник, лаборатория № 1; Институт материаловедения Научно-производственного объединения «Физика-Солнце» Академии наук Республики Узбекистан; Ташкент, Республика Узбекистан Рахимов Мурод Рустамович младший научный сотрудник, лаборатория № 1; Институт материаловедения Научно-производственного объединения «Физика-Солнце» Академии наук Республики Узбекистан; Ташкент, Республика Узбекистан Рашидов Хуршид Кибиряевич старший научный сотрудник, лаборатория № 1; Институт материаловедения Научно-производственного объединения «Физика-Солнце» Академии наук Республики Узбекистан; Ташкент, Республика Узбекистан
Оплатить 390 руб. (Картой) Оплатить 390 руб. (Через QR-код)

Нажимая на кнопку купить вы соглашаетесь с условиями договора оферты

Аннотация:
В работе представлены результаты исследования синтеза и сравнительного анализа пленочно-керамических композитов на основе функциональной керамики, полученных различными методами, включая термомеханохимический и золь-гель способы. Проанализировано влияние активации полученных материалов импульсным туннельным эффектом на их структуру и свойства. Приведены данные о развитии растений под композитными пленками в сравнении с контролем.
Образец цитирования:
ОБРАЗЕЦ ЦИТИРОВАНИЯ: Рахимов Р.Х., Паньков В.В., Ермаков В.П., Саидвалиев Т.С., Рашидов Ж.Х., Рахимов М.Р., Рашидов Х.К. Импульсный туннельный эффект: результаты испытаний пленочно-керамических композитов// Computational Nanotechnology. 2024. Т. 11. № 2. С. 174-190. DOI: 10.33693/2313-223X-2024-11-2-174-190. EDN: NHSAVQ
Список литературы:
Rakhimov R.Kh. Possible mechanism of pulsed quantum tunneling effect in photocatalysts based on nanostructured functional ceramics // Computational Nanotechnology. 2023. Vol. 10. No. 3. Pp. 26–34. DOI: 10.33693/2313- 223X-2023-10-3-26-34. EDN: QZQMCA.
Рахимов Р.Х. Применение керамических материалов. Дюссельдорф: Lambert, 2023. Т. 1. 278 с.; Т. 2. 202 с.; Т. 3. 384 с.; Т. 4. 220 с.
Рахимов Р.Х. Синтез функциональной керамики на БСП и разработки на ее основе // Comp. Nanotechnol. 2015. № 3. C. 11–25.
Рахимов Р.Х., Паньков В.В., Ермаков В.П. и др. Возможности пленочно-керамического композита для теплиц и парников // Актуальные проблемы физики твердого тела: сб. докладов X Междунар. науч. конф. (Минск, 22–26 мая 2023 г.). С. 481–484.
Рахимов Р.Х., Паньков В.В., Ермаков В.П. и др. Исследование свойств функциональной керамики синтезированной модифицированным карбонатным методом // Computational Nanotechnology. 2023. Т. 10. № 3. C. 130–143. DOI: 10.33693/2313-223X-2023-10-3-130-143. EDN: SZDYRZ.
Rakhimov R. United States Patent, № US 5.707.911, 13.01.99, Infrared radiation generating ceramic compositions.
Smye S.W. The interaction between terahertz radiation and biological tissue // Phys. Med. Biol. 2001. Vol. 46. Pp. R101–R112.
Huber R. How many-particle interactions develop after ultrafast excitation of an electron-hole plasma // Nature. 2001. Vol. 414. Pp. 286–289.
Усанов Д.А., Романова Н.В., Салдина Е.А. Перспективы и тенденции развития терагерцовых технологий: патентный ландшафт // Экономика науки. 2017. № 3.
Рахимов Р.Х. Импульсный туннельный эффект: фундаментальные основы и перспективы применения // Computational nanotechnology. 2024. Т. 11. № 1. С. 193–213. DOI: 10.33693/2313-223X-2024-11-1-193-213. EDN: EWSBUT.
Prather D.W., Shi S., Murakowski J. et al. Photonic crystal structures and applications: Perspective, overview, and development // IEEE Journal of Selected Topics in Quantum Electronics. 2006. No. 12 (6). Pp. 1416–1437.
Terahertz sources and systems (NATO Science Series, Ser. II, Vol. 27). R.E. Miles, P. Harrison, D. Lippens (eds.). Kluwer Academic Publishers, 2001. 350 p.
Van der Weide D. Applications and outlook for electronic terahertz technology // Optics & Photonics News. 2003. Vol. 14. No. 4. Pp. 48–53.
Секачева А.Ю., Рунина К.И. Синтез люминесцентных органо-неорганических гибридных материалов твердофазным методом // Успехи в химии и химической технологии. 2020. № 4 (227).
Rakhimov R.Kh., Yermakov V.P., Rakhimov M.R. Synthesis of materials by the radiation method and their application // Applied Solar Energy. 2022. Vol. 58. No. 1. Pp. 165–171. ISSN: 0003-701X.
Рахимов Р. Патент США № US 6.200.501 B1, 13.03.2001.
Рахимов Р. Патент США № US 6.379.377 B1, 30.04.2002. Use of infrared radiation in the treatment of oncological disorders.
Башкиров Л.А., Летюк Л.М., Паньков В.В. и др. Исследование промежуточных продуктов при получении порошка ферритов методом низкотемпературного синтеза // Термодинамические и физико-химические свойства ферритов: cб. ст. Свердловск, 1987. С. 111–113.
Летюк Л.М., Паньков В.В., Литвинов С.В. и др. Исследование технологических режимов синтеза Mn–Zn ферритов, полученных методом термовибропомола. Термодинамика и технология ферритов: тез. докл. VI Всесоюзного совещания. Ивано-Франковск, 1988. С. 91.
Башкиров Л.А., Летюк Л.М., Страхова Т.А. и др. Влияние условий термомеханического синтеза на свойства изделий из порошков марганец-цинкового феррита // Мехонохимический синтез: тез. докл. Всесоюзной конф. Владивосток, 1990. С. 103–106.
Паньков В.В., Башкиров Л.А. и др. Влияние условий термомеханической обработки на свойства порошков Mn—Zn феррита // Механохимия и механоэмиссия твердых тел: тез. докл. Всесоюного симпозиума. Чернигов, 1990. Т. 2. С. 160.
Zhan Z.L., He Y.D., Wang D.R., Gao W. Low-temperature processing of Fe–Al intermetallic coatings assisted by ball milling // Intermetallics. 2006. No. 14. P. 75.
Waqas H., Qureshi A.H. Influence of pH on nanosized Mn–Zn ferrite synthesized by sol–gel auto combustion process // J. Therm Anal. Calorim. 2009. No. 98. Pp. 355–360. DOI: 10.1007/s10973-009-0289-8.
Ключевые слова:
импульсный туннельный эффект, функциональная керамика пленочно-керамические композиты фотокатализаторы, композитные пленки, реакторы, генерация, импульсное излучение.


Статьи по теме

Нанотехнологии и наноматериалы (специальность 2.6.6) Страницы: 60-69 DOI: 10.33693/2313-223X-2023-10-2-60-69 Выпуск №23034
Перспективы применения пленочно-керамических фотокатализаторов для выращивания микроводорослей
микроводоросли фотокатализаторы композитные пленки реакторы генерация
Подробнее
Информатика и информационные процессы Страницы: 145-156 DOI: 10.33693/2313-223X-2024-11-2-145-156 Выпуск №119881
Исследование влияния импульсного излучения, генерируемого функциональной керамикой на основе принципа ИТЭ, на характеристики системы Cr2O3–SiO2–Fe2O3–CaO–Al2O3–MgO–CuO
керамика импульсное излучение импульсный туннельный эффект инфракрасный диапазон механоактивация
Подробнее
Разработка функциональных наноматериалов на основе наночастиц и полимерных наноструктур Страницы: 132-138 DOI: 10.33693/2313-223X-2022-9-1-132-138 Выпуск №20643
Исследование пленочно-керамического композита в гелиосушке
функциональная керамика импульсное излучение преобразователи спектра полиэтилен полиэтилен-керамический композит
Подробнее
5.2.2. МАТЕМАТИЧЕСКИЕ, СТАТИСТИЧЕСКИЕ И ИНСТРУМЕНТАЛЬНЫЕ МЕТОДЫ В ЭКОНОМИКЕ Страницы: 235-239 Выпуск №20773
Генерация вопросов на естественном языке с помощью нейросетей
нейросети естественный язык генерация анализ модель нейросети
Подробнее
Нанотехнологии и наноматериалы Страницы: 224-234 DOI: 10.33693/2313-223X-2024-11-1-224-234 Выпуск №95355
Производительные методы повышения эффективности протекания промежуточных реакций при синтезе функциональной керамики
импульсное инфракрасное излучине функциональная керамика карбонатный метод оксидная технология гелиотехнология
Подробнее
Нанотехнологии и наноматериалы Страницы: 214-223 DOI: 10.33693/2313-223X-2024-11-1-214-223 Выпуск №95355
Новые подходы к синтезу функциональных материалов с заданными свойствами под действием концентрированного излучения и импульсного туннельного эффекта
синтез функциональных материалов импульсный туннельный эффект концентрированное солнечное излучение метастабильные фазы электрические свойства
Подробнее
Нанотехнологии и наноматериалы Страницы: 193-213 DOI: 10.33693/2313-223X-2024-11-1-193-213 Выпуск №95355
Импульсный туннельный эффект: фундаментальные основы и перспективы применения
импульсный туннельный эффект когерентное излучение функциональные материалы сверхпроводимость наноматериалы
Подробнее
ТЕХНОЛОГИИ МАШИНОСТРОЕНИЯ. ЯДЕРНАЯ ТЕХНИКА Страницы: 129-131 Выпуск №7537
Возможность применения функциональной керамики для синтеза комплексных соединений
нейтрон гадолиний бор комплексные соединения импульсное излучение
Подробнее
7. Результаты экспериментальных исследований Страницы: 64-90 Выпуск №10450
ФУНКЦИОНАЛЬНАЯ КЕРАМИКА И ОБЛАСТИ ЕЕ ПРИМЕНЕНИЯ.НОВЫЙ ВЗГЛЯД НА СТАРЫЕ БОЛЕЗНИ.ЧАСТЬ 1. САХАРНЫЙ ДИАБЕТ, ОЖИРЕНИЕ, ГИПЕРТОНИЯ
функциональная керамика импульсное излучение преобразователи спектра ожирение гипертония
Подробнее
Методы и системы защиты информации, информационная безопасность Страницы: 130-143 DOI: 10.33693/2313-223X-2023-10-3-130-143 Выпуск №23683
Исследование свойств функциональной керамики, синтезированной модифицированным карбонатным методом
импульсное излучение солнечная печь ультразвук активация карбонаты
Подробнее